General Certificate of Education (A-level) January 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
cubstantially correct approach	
cf	candidate
dp	significant figure(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=18+6 x-12 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	one of these terms correct another term correct all correct (no $+c$ etc) (penalise $+c$ once only in question)
(b)	$18+6 x-12 x^{2}=0$	M1		putting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, PI by attempt to solve or factorise
	$6(3-2 x)(x+1) \quad(=0)$	m1		attempt at factors of their quadratic or use of quadratic equation formula
	$x=-1, x=\frac{3}{2} \quad \text { OE }$	A1	3	must see both values unless $x=-1$ is verified separately If M1 not scored, award SC B1 for verifying that $x=-1$ leads to $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and a further SC B2 for finding $x=\frac{3}{2}$ as other value
(c)(i)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6-24 x$	B1〕		FT their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ but $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ must be correct if 3 marks earned in part (a)
	When $x=-1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6-(24 \times-1)$	M1		Sub $x=-1$ into 'their' $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=30$	A1cso	3	
(ii)	Minimum point	E1 \checkmark	1	must have a value in (c)(i) FT "maximum" if their value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$
	Total		10	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)		M1 A1 A1	3	cubic curve with one max and one min (either way up) curve touching positive x-axis (either way up) correct graph passing through O and touching x-axis at 2
(ii)	$\begin{aligned} & x\left(x^{2}-4 x+4\right)=3 \\ & \Rightarrow x^{3}-4 x^{2}+4 x-3=0 \end{aligned}$	B1	1	AG (must have $=0$)
(b)(i)	$\begin{aligned} \mathrm{p}(-1) & =(-1)^{3}-4(-1)^{2}+4(-1)-3 \\ & (=-1-4-4-3) \end{aligned}$	M1		$\mathrm{p}(-1)$ attempted (condone one slip) or full long division to remainder
	$=-12$	A1	2	must indicate remainder $=-12$ if long division used
(ii)	$p(3)=3^{3}-4 \times 3^{2}+4 \times 3-3$	M1		$p(3)$ attempted (condone one slip) NOT long division
	$p(3)=0 \Rightarrow x-3$ is factor	A1	2	shown $=0$ plus statement
(iii)	Either $b=-1$ (coefficient of x correct) or $c=1$ (constant term correct)	M1		allow M1 for full attempt at long division or comparing coefficients if neither b nor c is correct
	$\mathrm{p}(x)=(x-3)\left(x^{2}-x+1\right)$	A1	2	
(c)	Discriminant of 'their quadratic' $=(-1)^{2}-4$	M1		numerical expression must be seen
	Discriminant $=-3($ or $<0) \Rightarrow$ no real roots	A1cso		must have correct quadratic and statement and all working correct
	(Only real root is $x=$) 3	B1	3	
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)(i)	$(x+3)^{2}+(y-1)^{2}$	B1		condone $(x--3)^{2}$
	$=13$	B1	2	$\text { condone }(\sqrt{13})^{2}$
(ii)	$x^{2}+6 x+9+y^{2}-2 y+1$	M1		attempt to multiply out both of 'their' brackets; must have x and y terms
	$\begin{array}{r} x^{2}+y^{2}+6 x-2 y \\ -3=0 \end{array}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	both $m=6$ and $n=-2$ All correct, $p=-3$ and..$=0$
(b)	$x=0 \Rightarrow y^{2}-2 y-3=0$	M1		putting $x=0 \quad$ PI and attempt to solve or factorise
	$\begin{aligned} & \Rightarrow(y-3)(y+1)=0 \\ & y=3, y=-1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		and attempt to solve or factorise
	\Rightarrow Distance $A B=3+1=4$	A1cso	3	$\begin{array}{rlr} \text { OR Pythagoras } & d^{2}=13-3^{2} & \text { M1 } \\ d=2 & \text { A1 } \\ \text { distance } & =2 \times 2=4 & \text { A1 } \end{array}$
(c)(i)	$(-5+3)^{2}+(-2-1)^{2}=4+9$ $=13$			Substitution $x=-5, y=-2$ into any correct circle equation
	$\Rightarrow D$ lies on circle	B1	1	convincing verification plus statement
(ii)	$\operatorname{grad} C D=\frac{1+2}{-3+5}$	M1		condone one sign slip
	$=\frac{3}{2} \quad(\text { or } 1.5)$	A1	2	$\text { not } \frac{-3}{-2}$
(iii)	$\text { Perpendicular gradient }=-\frac{2}{3}$	M1		ft their grad $C D$ or $m_{1} m_{2}=-1$ stated
	Tangent has equation $y+2=-\frac{2}{3}(x+5)$	A1	2	any form of correct equation eg $2 x+3 y+16=0$ $y=-\frac{2}{3} x+c, c=-\frac{16}{3}$
	Total		13	

Q	Solution	Marks	Total	Comments
7(a)(i)	(-) $(x+5)^{2}$	M1		$q=5$; condone $(-x-5)^{2}$
	$29-(x+5)^{2}$	A1	2	$p=29$ and $q=5$
(ii)	$x=-5$ is line of symmetry	B1 $\sqrt{ }$	1	FT $x=-$ 'their q ' or correct
(b)(i)	$4-10 x-x^{2}=k(4 x-13)$			
	$\Rightarrow x^{2}+4 k x+10 x-13 k-4=0$			Must see both these lines OE
	$\Rightarrow x^{2}+2(2 k+5) x-(13 k+4)=0$	B1	1	AG all correct working and = 0
(ii)	2 distinct roots $\Rightarrow b^{2}-4 a c>0$	B1		stated or used (must be >0)
	$\begin{aligned} & \text { Discriminant }=4(2 k+5)^{2}+4(13 k+4) \\ & 4\left(4 k^{2}+20 k+25+13 k+4\right)>0 \end{aligned}$	M1		condone one slip (may be within formula) or $16 k^{2}+132 k+116>0$
	$\Rightarrow 4 k^{2}+33 k+29>0$	A1	3	AG > 0 must appear before final line
(iii)	$(4 k+29)(k+1)$	M1		correct factors or correct unsimplified quadratic equation formula $\frac{-33 \pm \sqrt{33^{2}-4 \times 4 \times 29}}{8}$
	$k=-\frac{29}{4}, k=-1$	A1		condone $k=-\frac{58}{8},-7.25$ etc but not left with square roots etc as above
$-\frac{29}{4}$		M1		sketch or sign diagram including values
	$k<-\frac{29}{4}, \quad k>-1$ Take their final line as their answer	A1	4	condone use of OR but not AND
	Total		11	
	TOTAL		75	

